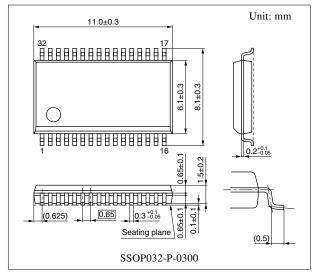
# **AN8473SA**

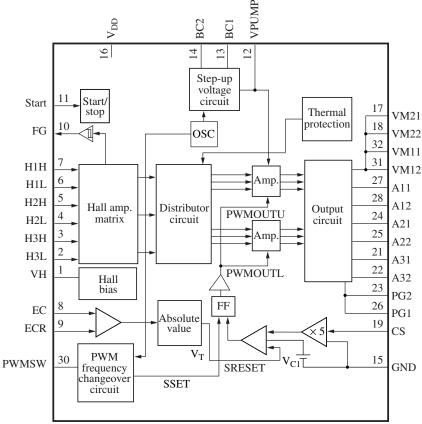
# Spindle motor driver IC for optical disk

#### Overview


The AN8473SA is an optical disk driver IC, featuring direct PWM drive, DMOS power drive, low ON resistance of output power MOS and  $120^{\circ}$  of duty-factor.

#### ■ Features

- $R_{ON} = 0.5 \Omega$  (for both upper and lower)
- 5 V single power source
- Circuit current 7 mA (including step-up circuit current)


### Applications

• Optical disk



Note) The package of this product will be changed to lead-free type (SSOP032-P-0300B). See the new package dimensions section later of this datasheet.

### ■ Block Diagram



### ■ Pin Descriptions

| Pin No. | Symbol            | Description                        | Pin No. | Symbol | Description                  |
|---------|-------------------|------------------------------------|---------|--------|------------------------------|
| 1       | VH                | Hall bias pin                      | 17      | VM21   | Motor supply voltage pin 2   |
| 2       | H3L               | Hall element-3 negative input pin  | 18      | VM22   | Motor supply voltage pin 2   |
| 3       | НЗН               | Hall element-3 positive input pin  | 19      | CS     | Current det. pin             |
| 4       | H2L               | Hall element-2 negative input pin  | 20      | N.C.   | N.C.                         |
| 5       | Н2Н               | Hall element-2 positive input pin  | 21      | A31    | Drive output 3               |
| 6       | H1L               | Hall element-1 negative input pin  | 22      | A32    | Drive output 3               |
| 7       | H1H               | Hall element-1 positive input pin  | 23      | PG2    | Power current det. pin 2     |
| 8       | EC                | Torque command input pin           | 24      | A21    | Drive output 2               |
| 9       | ECR               | Torque command reference input pin | 25      | A22    | Drive output 2               |
| 10      | FG                | FG signal output pin               | 26      | PG1    | Power current det. pin 1     |
| 11      | Start             | Start/stop changeover pin          | 27      | A11    | Drive output 1               |
| 12      | VPUMP             | Booster pin                        | 28      | A12    | Drive output 1               |
| 13      | BC1               | Booster capacitor connection pin 1 | 29      | N.C.   | N.C.                         |
| 14      | BC2               | Booster capacitor connection pin 2 | 30      | PWMSW  | PWM frequency changeover pin |
| 15      | GND               | Ground pin                         | 31      | VM12   | Motor supply voltage pin 1   |
| 16      | $V_{\mathrm{DD}}$ | Supply voltage pin                 | 32      | VM11   | Motor supply voltage pin 1   |

### ■ Absolute Maximum Ratings

| Parameter                        | Symbol               | Rating             | Unit |  |
|----------------------------------|----------------------|--------------------|------|--|
| Supply voltage *2                | $V_{DD}$             | 6.5                | V    |  |
|                                  | V <sub>M11, 12</sub> |                    |      |  |
|                                  | V <sub>M21, 22</sub> |                    |      |  |
| Drive output voltage *5          | $V_{(m)}$            | 15                 | V    |  |
| Control signal input voltage *6  | V <sub>(n)</sub>     | $0$ to $ m V_{DD}$ | V    |  |
| Supply current                   | $I_{\mathrm{DD}}$    | 30                 | mA   |  |
| Drive output current *4          | $I_{(o)}$            | ±1 200             | mA   |  |
| Hall bias current *7             | I <sub>HB(n)</sub>   | 30                 | mA   |  |
| Power dissipation *3             | $P_{\mathrm{D}}$     | 293                | mW   |  |
| Operating ambient temperature *1 | T <sub>opr</sub>     | -30 to +85         | °C   |  |
| Storage temperature *1           | $T_{stg}$            | -55 to +150        | °C   |  |

Note) Do not apply external currents or voltages to any pins not specifically mentioned.

For circuit currents, '+' denotes current flowing into the IC, and '-' denotes current flowing out of the IC.

- \*1: Except for the operating ambient temperature and storage temperature, all ratings are for  $T_a = 25$ °C.
- \*2: The voltage in the step-up voltage circuit exceeds the supply voltage.

  For the allowable value of the step-up voltage, refer to "■ Electrical Characteristics".
- \*3: The power dissipation shown is the value of independent IC without a heat sink at  $T_a = 70^{\circ}$ C. Refer to the  $P_D T_a$  curves of the "Application Notes" for details.

\*4: o = 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 31, 32

\*5: m = 21, 22, 24, 25, 27, 28

\*6: n = 2, 3, 4, 5, 6, 7, 8, 9, 11, 30

\*7: n = 1

AN8473SA

# ■ Recommended Operating Range

| Parameter      | Symbol                                                    | Range      | Unit |
|----------------|-----------------------------------------------------------|------------|------|
| Supply voltage | V <sub>DD</sub> V <sub>M11, 12</sub> V <sub>M21, 22</sub> | 4.5 to 5.5 | V    |

# $\blacksquare$ Electrical Characteristics at $T_a=25^{\circ}C$

| Parameter                            | Symbol             | Conditions                                                                        | Min  | Тур  | Max  | Unit    |  |
|--------------------------------------|--------------------|-----------------------------------------------------------------------------------|------|------|------|---------|--|
| Overall                              |                    |                                                                                   |      |      |      |         |  |
| Circuit current 1                    | $I_{\mathrm{DD1}}$ | $V_{DD} = 5 \text{ V}$ in power save mode                                         | _    | 0    | 0.2  | mA      |  |
| Circuit current 2                    | $I_{\mathrm{DD2}}$ | $V_{DD} = 5 \text{ V}$ including step-up circuit                                  | _    | 7    | 14   | mA      |  |
| Start/stop                           |                    |                                                                                   |      |      | •    |         |  |
| Start voltage                        | V <sub>START</sub> | Voltage with which a circuit operates at $V_{\rm DD}$ = 5 V and L $\rightarrow$ H | 2.7  | _    | _    | V       |  |
| Stop voltage                         | V <sub>STOP</sub>  | Voltage with which a circuit becomes off at $V_{DD}$ = 5 V and H $\rightarrow$ L  | _    | _    | 0.7  | V       |  |
| Hall bias                            |                    |                                                                                   |      |      |      |         |  |
| Hall bias voltage                    | V <sub>HB</sub>    | $V_{DD} = 5 \text{ V}, I_{HB} = 20 \text{ mA}$                                    | 0.7  | 1.2  | 1.6  | V       |  |
| Hall amplifier                       |                    |                                                                                   |      |      |      |         |  |
| Input bias current                   | $I_{BH}$           | $V_{DD} = 5 \text{ V}$                                                            | _    | 1    | 5    | μΑ      |  |
| In-phase input voltage range         | $V_{HBR}$          | $V_{DD} = 5 \text{ V}$ , except for H2H, H2L                                      | 1.5  | _    | 4.0  | V       |  |
| Minimum input level                  | V <sub>INH</sub>   | $V_{DD} = 5 \text{ V}$                                                            | 60   | _    | _    | mV[p-p] |  |
| Torque command                       |                    |                                                                                   |      |      | •    |         |  |
| In-phase input voltage range         | EC                 | $V_{DD} = 5 \text{ V}$                                                            | 0.5  | _    | 3.9  | V       |  |
| Offset voltage                       | EC <sub>OF</sub>   | $V_{DD} = 5 \text{ V}$                                                            | -100 | 0    | 100  | mV      |  |
| Dead zone                            | $EC_{DZ}$          | $V_{DD} = 5 \text{ V}$                                                            | 0    | 75   | 150  | mV      |  |
| Input current                        | EC <sub>IN</sub>   | $V_{DD} = 5 \text{ V}, EC = ECR = 2.5 \text{ V}$                                  | -5   | -1   | _    | μΑ      |  |
| Input/output gain                    | A <sub>CS</sub>    | $V_{DD} = 5 \text{ V}, R_{CS} = 0.33 \Omega$                                      | 0.36 | 0.48 | 0.60 | A/V     |  |
| Output                               |                    |                                                                                   |      | •    | •    |         |  |
| High-level output saturation voltage | V <sub>OH</sub>    | $V_{DD} = 5 \text{ V}, I_{O} = -500 \text{ mA}$                                   | _    | 0.15 | 0.30 | V       |  |
| Low-level output saturation voltage  | V <sub>OL</sub>    | $V_{DD} = 5 \text{ V}, I_{O} = 500 \text{ mA}$                                    |      | 0.15 | 0.30 | V       |  |
| Torque limit current                 | $I_{TL}$           | $V_{DD} = 5 \text{ V}, R_{CS} = 0.33 \Omega$                                      | 455  | 570  | 685  | mA      |  |
| FG                                   |                    |                                                                                   |      |      |      |         |  |
| FG output high-level                 | $FG_H$             | $V_{DD} = 5 \text{ V}, I_{FG} = -0.01 \text{ mA}$                                 | 3    | _    | _    | V       |  |
| FG output low-level                  | $FG_L$             | $V_{DD} = 5 \text{ V}, I_{FG} = 0.01 \text{ mA}$                                  | _    | _    | 0.5  | V       |  |
| In-phase input voltage range         | V <sub>FGR</sub>   | $V_{DD} = 5 \text{ V}$                                                            | 1.5  | _    | 3.0  | V       |  |
| FG hysteresis width                  | $H_{FG}$           | $V_{DD} = 5 \text{ V}$                                                            | 5    | 10   | 20   | mV      |  |
| Step-up circuit                      |                    |                                                                                   |      |      |      |         |  |
| Step-up voltage                      | V <sub>PUMP</sub>  | $V_{DD} = 5 \text{ V}$                                                            | 7    | _    | 10   | V       |  |
|                                      |                    |                                                                                   |      |      |      |         |  |

## ■ Electrical Characteristics at T<sub>a</sub> = 25°C (continued)

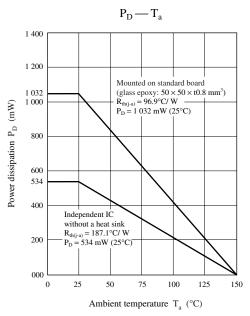
| Parameter                  | Symbol           | Conditions             | Min | Тур | Max | Unit |
|----------------------------|------------------|------------------------|-----|-----|-----|------|
| PWM oscillation changeover |                  |                        |     |     |     |      |
| Input high-level           | PWM <sub>H</sub> | $V_{DD} = 5 \text{ V}$ | 4.5 | _   | _   | V    |
| Input low-level            | $PWM_L$          | $V_{DD} = 5 \text{ V}$ | _   | _   | 0.5 | V    |

#### • Design reference data

Note) The characteristics listed below are theoretical values based on the IC design and are not guaranteed.

| Parameter                                | Symbol             | Conditions                                         | Min | Тур | Max | Unit |  |  |
|------------------------------------------|--------------------|----------------------------------------------------|-----|-----|-----|------|--|--|
| PWM oscillation changeover               |                    |                                                    |     |     |     |      |  |  |
| PWM frequency high-level                 | $f_{PWMH}$         | $V_{DD} = 5 \text{ V}, PWMSW = Low$                | _   | 80  | _   | kHz  |  |  |
| PWM frequency low-level                  | $f_{PWML}$         | $V_{DD} = 5 \text{ V}, \text{PWMSW} = \text{High}$ | _   | 40  | _   | kHz  |  |  |
| Thermal protection                       | Thermal protection |                                                    |     |     |     |      |  |  |
| Thermal protection operating temperature | T <sub>SDON</sub>  | $V_{DD} = 5 \text{ V}$                             | _   | 150 | _   | °C   |  |  |
|                                          |                    |                                                    |     |     |     |      |  |  |
| Thermal protection hysteresis width      | $\Delta T_{SD}$    | $V_{\rm DD} = 5 \text{ V}$                         | _   | 40  |     | °C   |  |  |

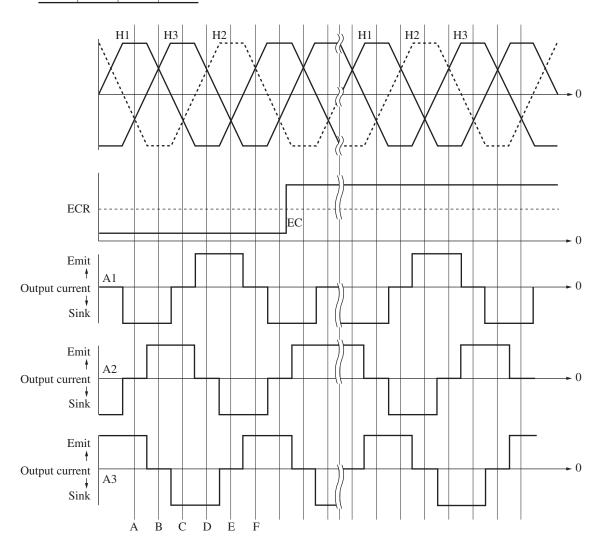
### ■ Usage Notes


Prevent this IC from being line-to-ground fault.
 (To be concrete, do not short-circuit any of A31 (pin 21), A32 (pin 22), A21 (pin 24), A22 (pin 25), A11 (pin 27) and A12 (pin 28) with GND pin (pin 15).)

• Be careful of the following three pins because their static breakdown voltages are low. (C = 200 pF, R = 0  $\Omega$ )

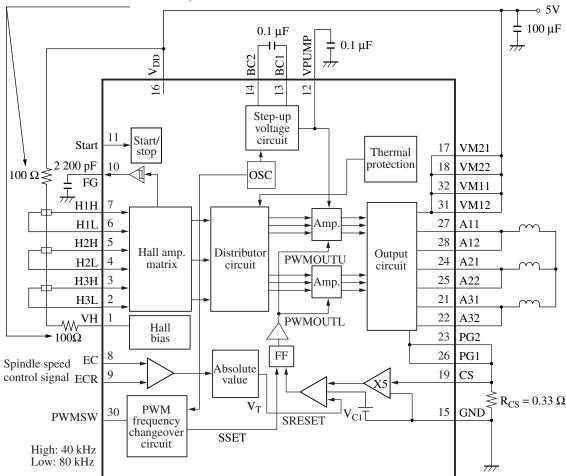
Pin 23: breakdown at 120 V Pin 26: breakdown at 120 V

#### ■ Application Notes

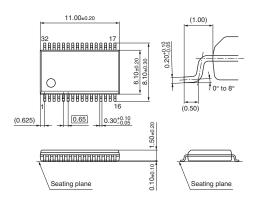

P<sub>D</sub> — T<sub>a</sub> curves of SSOP032-P-0300



## ■ Application Notes (continued)


• Phase conditions between Hall input and output current

| Phase of Hall pin |             |    |    |  |  |  |  |  |  |
|-------------------|-------------|----|----|--|--|--|--|--|--|
|                   | H1H H2H H3H |    |    |  |  |  |  |  |  |
| A                 | Н           | ML | ML |  |  |  |  |  |  |
| В                 | MH          | L  | MH |  |  |  |  |  |  |
| С                 | ML          | ML | Н  |  |  |  |  |  |  |
| D                 | L           | MH | MH |  |  |  |  |  |  |
| Е                 | ML          | Н  | ML |  |  |  |  |  |  |
| F                 | MH          | MH | L  |  |  |  |  |  |  |




### ■ Application Circuit Example

(Check the stipulated value of electrical characteristics and then determine resistance value.)



- New Package Dimensions (Unit: mm)
- SSOP032-P-0300B (Lead-free package)



# Request for your special attention and precautions in using the technical information and semiconductors described in this material

- (1) An export permit needs to be obtained from the competent authorities of the Japanese Government if any of the products or technologies described in this material and controlled under the "Foreign Exchange and Foreign Trade Law" is to be exported or taken out of Japan.
- (2) The technical information described in this material is limited to showing representative characteristics and applied circuit examples of the products. It does not constitute the warranting of industrial property, the granting of relative rights, or the granting of any license.
- (3) The products described in this material are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
  - Consult our sales staff in advance for information on the following applications:
  - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
  - Any applications other than the standard applications intended.
- (4) The products and product specifications described in this material are subject to change without notice for reasons of modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the guaranteed values, in particular those of maximum rating, the range of operating power supply voltage and heat radiation characteristics. Otherwise, we will not be liable for any defect which may arise later in your equipment. Even when the products are used within the guaranteed values, redundant design is recommended, so that such equipment may not violate relevant laws or regulations because of the function of our products.
- (6) When using products for which dry packing is required, observe the conditions (including shelf life and after-unpacking standby time) agreed upon when specification sheets are individually exchanged.
- (7) No part of this material may be reprinted or reproduced by any means without written permission from our company.

### Please read the following notes before using the datasheets

- A. These materials are intended as a reference to assist customers with the selection of Panasonic semiconductor products best suited to their applications.
  - Due to modification or other reasons, any information contained in this material, such as available product types, technical data, and so on, is subject to change without notice.
  - Customers are advised to contact our semiconductor sales office and obtain the latest information before starting precise technical research and/or purchasing activities.
- B. Panasonic is endeavoring to continually improve the quality and reliability of these materials but there is always the possibility that further rectifications will be required in the future. Therefore, Panasonic will not assume any liability for any damages arising from any errors etc. that may appear in this material.
- C. These materials are solely intended for a customer's individual use. Therefore, without the prior written approval of Panasonic, any other use such as reproducing, selling, or distributing this material to a third party, via the Internet or in any other way, is prohibited.